# Controversy Detection and Analysis



Dr. Shiri Dori-Hacohen AuCoDe

(+ University of Massachusetts Amherst)



Signal Media - December 2017

Presenting joint work with James Allan, David Jensen, Elad Yom-Tov, Myung-ha Jang, John Foley





Growing interest in detecting controversy computationally

# The Concerns

# The Concerns



The Filter Bubble

# The Concerns



Misinformation

#### **Overview**

- Motivation
- Related Work
- Controversy Detection in Wikipedia Using Collective Classification
- Contributions to Controversy Detection
  - On the web (using Wikipedia, language models)
  - Position paper (social, ethical, technical challenges)
  - Contention (population-based mathematical model)
- Startup AuCoDe

# Controversy on the Web & search

- Only in domain-specific areas
  - News (Choi et al., 2010, Awadallah et al. 2011, Mejova et al., 2014)
  - Twitter (Popescu & Pennacchiotti, 2010)
- Controversial query detection (Gyllstrom & Moens, 2011)
- Controversy detection problem in the web didn't exist
  - Only specific sub-instances of it
  - Wasn't treated as a general issue
- Prior work focused almost exclusively on political controversies (using Debatepedia)

## Sentiment Analysis vs. Controversy

- Sentiment analysis seen as a step towards detecting varying opinions/controversy
  - o cf. Choi et al., 2010; Cartright et al., 2009
- Other work shows sentiment & controversy are overlapping, but not identical, constructs
  - Dori-Hacohen & Allan, 2013; Mejova et al., 2014
- Sentiment analysis may be more effective when considering its variance in analyzing online conversations, rather than when examining individual webpages

# Controversy Detection in Wikipedia

- Where everything started
- Kittur et al., 2007 First classifier for controversy in Wikipedia articles
- Sumi et al., 2011; Yasseri et al., 2012 Using the concept of edit wars and reverts; Heuristic approach
- Sepehri Rad & Barbosa, Sepehri Rad et al. 2012 Using collaboration networks between authors; Algorithm was computationally intensive, impractical
- Jankowski-lorek et al., 2015 article feedback tool
- Jesus et al., 2009 Clusters of controversial pages (anecdotally)
- Either machine learning or heuristic approaches
- Generally classify each page in isolation

#### **Overview**

- Motivation
- Related Work
- Controversy Detection in Wikipedia Using Collective Classification
- Contributions to Controversy Detection
  - On the web (using Wikipedia, language models)
  - Position paper (social, ethical, technical challenges)
  - Contention (population-based mathematical model)
- Startup AuCoDe

# Controversy Detection in Wikipedia Using Collective Classification

Published in SIGIR 2016

Joint work with David Jensen & James Allan

# Controversy Detection in Wikipedia Using Collective Classification



Prior work on automated controversy detection in Wikipedia has focused on pages in isolation

# Controversy Detection in Wikipedia Using Collective Classification



Hypothesis: related Wikipedia pages might have similar amount of controversy (homophily)

#### Collective & Stacked Classification

- Collective Inference is a technique which leverages homophily between related instances for inference
- However, it generally requires availability of labeled data for neighbors
- In our case, labeled data is sparse
- Stacked inference is an ensemble method which predicts labels for neighbors and then uses them

# Approach

#### Intrinsic Classifier:

Training and inference on features of each WP page as a standalone page

(e.g. Creationism)

Leveraging the graph structure of WP to make the inference better

# Bridging knowledge discovery and IR: A Subnetwork of Neighbors

- Traditionally: neighbors = relational database
- Hypothesis: not all links created equal



Use text similarity to select neighbors (TF-IDF)

# **Experimental conditions**

| Name        | Description                                |  |  |
|-------------|--------------------------------------------|--|--|
| Stacked-    | Proposed stacked inference system with a   |  |  |
| Ranked- $k$ | similarity-based subnetwork                |  |  |
| Stacked-    | A stacked inference system which uses $k$  |  |  |
| Random- $k$ | randomly selected neighbors                |  |  |
| Neighbors-  | A classifier based only on the neigh-      |  |  |
| Only-k      | bor predictions (as in a regular stacked   |  |  |
|             | model), without using the intrinsic fea-   |  |  |
|             | tures of the center page                   |  |  |
| Intrinsic   | A classifier using only intrinsic features |  |  |
| Stacked-    | A stacked inference system, as above, but  |  |  |
| All         | which uses all Wikipedia neighbors         |  |  |
| Prior work  | See Sepehri Rad & Barbosa [12] for details |  |  |

#### **Cross Validation Procedure**

#### Algorithm 1 Cross-validation stacked training procedure

```
for fold i = 1..k, Set_i = A \setminus fold_i do

Train IM_i, an intrinsic model on Set_i

Select subneighbors(Set_i) \subseteq neighbors(Set_i)

Apply IM_i on subneighbors(Set_i)

Aggregate predictions of subneighbors(Set_i) to create an extended feature set, Set'_i

Train SM_i, a stacked collective model on Set'_i

end for
```

### **Datasets**

| Set        | Articles | Controversial |
|------------|----------|---------------|
| DHA [5]    | 1926     | 293 (15.2%)   |
| SRMRB [12] | 480      | 240 (50%)     |

#### **Results - AUC**





ntrinsic Neighbors-10 Neighbors-300 Neighbors-All

Intrinsic Neighbors-10 Neighbors-300 Neighbors-All

DHA dataset SRMRB dataset 21

# Results - Accuracy (vs. prior work)



# Results - summary

- Similar Neighbors improve results
  - Results increase substantially for first 25 neighbors
  - Stacked classifier outperforms both the Intrinsic and Neighbor-only models
  - Similar is better than Random, esp. w/small # of neighbors; converging as # approaches all neighbors
- Neighbors Provide Quality Inference Without Intrinsic Features
- Stacked Models Outperform Prior Work

# So What?

- Leveraging the graph structure in Wikipedia
- Allows one to extend labels to a wider page set
  - Short edit history, no talk pages, low popularity, etc.
- Improved upon state-of-the-art methods
- Agnostic to the choice of intrinsic classifier
  - Any intrinsic classifier for controversy in Wikipedia can be enhanced by applying stacked classifier

#### **Future Directions**

- Subnetwork approach can be generalized to other semi-structured problem domains
- Study tradeoff between similarity and inference costs
- Explore other similarity constructions
- Automated detection of controversy holds promise for a variety of applications

#### **Overview**

- Motivation
- Related Work
- Controversy Detection in Wikipedia Using Collective Classification
- Contributions to Controversy Detection
  - On the web (using Wikipedia, language models)
  - Position paper (social, ethical, technical challenges)
  - Contention (population-based mathematical model)
- Startup AuCoDe

#### Our work so far

- Improving Controversy Detection in Wikipedia (Dori-Hacohen, Jensen & Allan; SIGIR 2016)
- Controversy Detection on the Web (Dori-Hacohen & Allan; CIKM 2013, ECIR 2015)
- Probabilistic Approaches to Controversy
   Detection (Jang, Foley, Dori-Hacohen & Allan; CIKM 2016)
- Navigating Controversy as a Complex Search
   Task (Dori-Hacohen, Yom-Tov & Allan; SCST workshop, ECIR 2015)
- Modeling Controversy as Contention Within Populations (Jang, Dori-Hacohen & Allan; ICTIR 2017)

## Wikipedia is great, Web is better

- We wanted to extend the work to the web
- But, the rich metadata from Wikipedia is non-existent on the web
- How can we bridge the gap?

# **Controversy Detection on the Web**





#### **Automated Controversy Detection on the web**



# Language Models of Controversy

Jang, Foley, Dori-Hacohen, & Allan, CIKM 2016

A theoretical and empirical framework for Language Models of Controversy

$$P(D|C) \approx P(D|L_C) = \prod_{w \in D} (\lambda P(w|L_C) + (1 - \lambda)P(w|L_G))$$
$$\log P(D|L_C) = \sum_{w \in D} \log \left[\lambda P(w|L_C) + (1 - \lambda)P(w|L_G)\right]$$
$$P(D|L_{NC}) \approx P(D|L_{NC}) = \prod_{w \in D} P(w|L_{NC})$$
$$\log P(D|L_{NC}) = \sum_{w \in D} \log P(w|L_{NC})$$





(?) Strong disagreement among large groups of people.

(?) Like relevance, define operationally.

Inter-annotator agreement is tough

## Supporting users with controversial queries? CHALLENGE ACCEPTED.

Detecting controversial topics:

- Prior work on Wikipedia, Twitter, and the web
- From doc, query perspectives
- Goal of informing users



- Prior work on automated stance extraction
- Argumentation frameworks
- Sentiment ≠ controversy





#### Open questions:

- Concerns for democracy, diversity
- Bias regardless of personalization
- Slippery slope? Censorship??
- Effect on users?
- Ethical, civic duty? (to whom?)



# Navigating Controversy as a Complex Search Task

Dori-Hacohen, Yom-Tov & Allan, SCST Workshop, ECIR 2015

Discussing technical, social and ethical challenges of helping users with controversy in search

#### **Overview**

- Motivation
- Related Work
- Controversy Detection in Wikipedia Using Collective Classification
- Contributions to Controversy Detection
  - On the web (using Wikipedia, language models)
  - Position paper (social, ethical, technical challenges)
  - Contention (population-based mathematical model)
- Startup AuCoDe

## **Definition of Controversy**

- "controversial topics are those that generate strong disagreement among large groups of people."
  - Operational definition (à la relevance)
- Intuition suggests sentiment (incorrectly!)
- Problematic controversy definitions/datasets (by others)
  - Confounding Wiki vandalism and controversy (Vuong et al., 2008)
  - Using "lamest edit wars" as a controversy dataset (Bykau et al., 2015)

# Towards a computational definition

- We were looking for a better definition that could be clearly understood & reproducible
- Inspired by "there is no controversy" arguments (e.g. vaccines/autism)
- How is it possible?

### Contention, based on populations

- The big "a-ha" moment: we have to talk about populations
- We define a new term: contention
- Which is a function of topic, AND population
- What's the probability that two people, randomly selected from the population, will hold conflicting opinions?

#### **Mathematical model for Contention**

$$P(c|\Omega,T) = P(p_1,p_2 \text{ selected randomly from } \Omega, \exists s_i, s_j \in S,$$
  
s.t.  $holds(p_1,s_i,T) \land holds(p_2,s_j,T) \land conflicts(s_i,s_j))$ 

We define **stance groups** in the population, which are groups of people that hold the same stance. For  $i \in \{0..k\}$ , let  $G_i = \{p \in \Omega | holds(p, s_i, T)\}$ . By construction,  $\Omega = \bigcup_i G_i$ .

$$P(c|\Omega,T) = \frac{\sum_{i \in \{2..k\}} \sum_{j \in \{1..i-1\}} (2|G_i||G_j|)}{|\Omega|^2}$$

#### Selected results - scientists vs. U.S.



#### **Selected results**

#### **Brexit contention**



Outlier: 0.15



#### Selected results - Gun control in U.S.

Do you support increased gun control?



#### What colors are this dress?



#### What colors are this dress?



#### The Dress on Twitter



#### **Brexit on Twitter**



#### **US Election on Twitter**





2016 U.S. Presidential Election

## Hypothesized model for controversy

Contention is one dimension of controversy



#### **Overview**

- Motivation
- Related Work
- Controversy Detection in Wikipedia Using Collective Classification
- Contributions to Controversy Detection
  - On the web (using Wikipedia, language models)
  - Position paper (social, ethical, technical challenges)
  - Future work Definition of Controversy
- Startup AuCoDe

## Startup -



 In April '16, I founded a startup to bring our controversy technology to market

 Won first place and non-equity grant in the UMass Innovation Challenge



## Startup -



- Went through a couple of pivots (news, PR)
- Constructing an alternative data PoC (backtest)
- Looking into social good applications
- Patent application through UMass
- \$95K non-equity funding raised to date
- Recently applied for NSF SBIR funding

# Thank you!

# Questions, comments?

shiri@dori-hacohen.com shiri@cs.umass.edu

www.linkedin.com/in/shiri controversies.info